Novel polycarbonate-graphene nanocomposite foams prepared by CO2 dissolution

نویسندگان

  • G Gedler
  • M Antunes
  • J I Velasco
چکیده

Polycarbonate foams reinforced with 0,5 wt% of graphene were obtained by firstly melt-mixing the polycarbonate and graphene in an internal mixer, compression-moulding the melt-compounded grinded material and lastly dissolving CO2 inside a high pressure vessel. The CO2 desorption behaviour in the unfilled polycarbonate and nanocomposite was studied in terms of the CO2 saturation concentration and desorption diffusion coefficient, with the graphene-filled nanocomposite displaying a higher CO2 loss rate when compared to the neat polycarbonate. The cellular structure of the foams was found to be highly dependent on the saturation/foaming temperature, with smaller cell sizes being obtained with decreasing the temperature. Another parameter that had an important influence was the residual pressure, with higher residual pressure values resulting in foams with more uniform and regular cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced electrical conductivity in graphene-filled polycarbonate nanocomposites by microcellular foaming with sc-CO2

Electrically conductive polycarbonate foams containing a low concentration of graphene nanoplatelets (0.5 wt.%) were produced with variable range of expansion ratio by applying a high pressure batch foaming process using sc-CO2. The structure of the foams was assessed by means of SEM, AFM and WAXS, and the electrical conductivity was measured in the foam growing direction. Results showed that e...

متن کامل

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

Graphene Oxide/Hydroxyapatite/Silver (rGO/HAP/Ag) nanocomposite: Synthesis, characterization, catalytic and antibacterial activity

 In this paper, a novel ternary nanocomposite namely reduced graphene oxide/hydroxyapatite/silver (rGO/HAP/Ag) was prepared by a simple hydrothermal method using graphene oxide nanosheets, Ca(NO3)2, (NH4)2HPO4, and AgNO3 as starting materials. The as-prepared nanocomposite was characterized by using various photophysical techniqu...

متن کامل

A Green Method for Processing Polymers using Dense Gas Technology

Dense CO2 can be used as an environmentally-benign polymer processing medium because of its liquid-like densities and gas-like mass transfer properties.In this work, polymer bio-blends of polycarbonate (PC), a biocompatible polymer, and polycaprolactone (PCL), a biodegradable polymer were prepared. Dense CO2 was used as a reaction medium for the melt-phase PC polymerization in the presence of d...

متن کامل

Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction.

Using a modified chemical vapor deposition (CVD) method, we have prepared a class of new graphene foams (GFs) doped with nitrogen, boron or both. Nitrogen-doped graphene foams (N-GFs) with a nitrogen doping level of 3.1 atom% were prepared by CVD of CH4 in the presence of NH3 while boron-doped graphene foams (B-GFs) with a boron doping level of 2.1 atom% were produced by using toluene and triet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012